Machine learning-based automation of COVID-19 screening using clinical dataset

Abstract

Fast and effective screening of COVID-19 patients can help decrease its mortality rate. In this study, we employed machine learning methods on clinical datasets for automated COVID-19 screening. The model configuration with a decision tree as the classifier, forward selection as a feature selection method, and six features has 91% precision, 85% accuracy, 92% sensitivity, and 91% F1-score. We also determined the following relevant features identified by the employed feature selection technique that helped screen COVID-19 patients: lymphocytes, chest X-ray label, BMI, PCT, eGFR result, and comorbidity chronic lung disease. This study demonstrates the potential of machine learning models trained on clinical data in classifying COVID-19 patients to help facilitate the screening procedure.

Previous
Previous

Artificial intelligence for liver disease detection using ultrasound images

Next
Next

Identification of candidate genomic regions by integrating cluster analysis and genome-wide association studies